\begin{tabbing} $\forall$$k$:Knd, $T$, $B$:Type, $l$:IdLnk, ${\it ds}$:$x$:Id fp$\rightarrow$ Type, ${\it tg}$:Id, $f$:(State(${\it ds}$)$\rightarrow$$T$$\rightarrow$$B$), ${\it es}$:ES. \\[0ex]usends1{-}p(${\it es}$;${\it ds}$;$k$;$T$;$l$;${\it tg}$;$B$;$f$) \\[0ex]$\Rightarrow$ ($\exists$\=$g$:\{$e$:E$\mid$ loc($e$) = source($l$) $\in$ Id \& kind($e$) = $k$\} $\rightarrow$E\+ \\[0ex]($\forall$$e$:\{$e$:E$\mid$ loc($e$) = source($l$) $\in$ Id \& kind($e$) = $k$\} . \\[0ex](kind($g$($e$)) = rcv($l$,${\it tg}$) $\in$ Knd) \\[0ex]c$\wedge$ \=(sender($g$($e$)) = $e$\+ \\[0ex]\& ($\forall$${\it e''}$:E. (kind(${\it e''}$) = rcv($l$,${\it tg}$) $\in$ Knd) $\Rightarrow$ (sender(${\it e''}$) = $e$) $\Rightarrow$ (${\it e''}$ = $g$($e$))) \\[0ex]\& val($g$($e$)) = $f$((state when $e$),val($e$))))) \-\- \end{tabbing}